前言
早期经典方法为何对小目标检测效果不好?小目标检测有哪几种方案?
一步一步来~
1,faster rcnn, yolo, ssd等对小目标为啥不work?
SSD,YOLO等单阶段多尺度算法,小目标检测需要较高的分辨率,SSD对于高分辨的低层特征没有再利用,而这些层对于检测小目标很重要。按SSD的设计思想,其实SSD对小目标应该有比较好的效果,但是需要重新精细设计SSD中的default box,比如重新设计min_sizes参数,扩大小default box的数量来cover住小目标。但是随着default box数量的增加,网络速度也会降低。YOLO网络可以理解为是强行把图片分割成7*7个网格,每个网格预测2个目标,相当于只有98个anchor,所以不管是小目标,还是大目标,YOLO的表现都不是很理想,但是由于只需处理少量的anchor,所以YOLO的速度上有很大优势。
Faster rcnn系列对小目标检测效果不好的原因是faster rcnn只用卷积网络的最后一层,但是卷积网络的最后一层往往feature map太小,导致之后的检测和回归无法满足要求。甚至一些小目标在最后的卷积层上直接没有特征点了。所以导致faster rcnn对小目标检测表现较差。
难点
分辨率低,图像模糊,携带的信息少。
2,可选解决方案
2.1 借鉴FPN的思想
在FPN之前目标检测的大多数方法都是和分类一样,使用顶层的特征来进行处理。虽然这种方法只是用到了高层的语义信息,但是位置信息却没有得到,尤其在检测目标的过程中,位置信息是特别重要的,而位置信息又是主要在网络的低层。因此FPN采用了多尺度特征融合的方式,采用不同特征层特征融合之后的结果来做预测。
2.2 要让输入的分布尽可能地接近模型预训练的分布
先用ImageNet做预训练,之后使用原图上采样得到的图像来做微调,使用微调的模型来预测原图经过上采样的图像。该方法提升效果比较显著。
2.3 多尺度
采用多尺度输入训练方式来训练网络;
2.4 借鉴Cascade R-CNN的设计思路
优化目标检测中Two-Stage方法中的IOU阈值。检测中的IOU阈值对于样本的选取是至关重要的,如果IOU阈值过高,会导致正样本质量很高,但是数量会很少,会出现样本比例不平衡的影响;如果IOU阈值较低,样本数量就会增加,但是样本的质量也会下降。如何选取好的IOU,对于检测结果来说很重要。⑤采用分割代替检测方法,先分割,后回归bbox来检测微小目标。